Bridging Mathematical Optimization, Information Theory, and Data Science - Conference Videos and Slides

Below are the approved videos and slides from the Bridging Mathematical Optimization, Information Theory, and Data Science Conference.  


Peter Bartlett (UC Berkeley) - Optimization and Generalization Properties of Deep Neural Networks 

Presentation slides


Sebastien Bubeck (Microsoft Research) - Metrical Task Systems on Trees 

Presentation slides


Yuejie Chi (Carnegie Melon University) - Geometry and Regularization in Nonconvex Statistical Estimation 

Presentation slides


Alex Dimakis (University of Texas at Auston) - Gans for Compressed Sensing and Adversarial Defense 

Presentation slides


Donald Goldfarb (Columbia University) - ADMM for Multiaffine Constrained Optimization: Theory and Applications

Presentation slides


Alfred Hero (University of Michigan) - Rate-Optimal Meta-Learning 

Presentation slides


Andrea Montanari (Stanford University) - A Mean Field View of the Landscape of Two-Layers Neural Networks 

Presentation slides


Arkadi Nemirovski (Georgia Tech) - Tight Semidefinite Relaxations and Statistical Estimation 

Presentation Slides


Robert Nowak (University of Wisconsin) - Outranked: Exploiting Nonlinear Algebraic Structure in Matrix Recovery Problems 

Presentation slides


Alex Shapiro (Georgia Tech) - Matrix Completion with Deterministic Pattern 

Presentation slides


Weijie Su (University of Pennsylvania) - HiGrad: Statistical Inference for Online Learning and Stochastic Approximation

Presentation slides


David Tse (Stanford University) - Understanding Generative Adversarial Networks 

Presentation slides


Yihong Wu (Yale University) - Recovering a Hidden Hamiltonian Cycle via Linear Programming 

Presentation slides


Anru Zhang (University of Wisconsin) - Sparse and Low-Rank Tensor Estimation via Cubic Sketchings 

Presentation slides