Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control

Fri, Feb 28, 2020, 12:30 pm
CSML Classroom 103
Center for Statistics and Machine Learning

In this paper, we introduce Symplectic ODE-Net (SymODEN), a deep learning framework which can infer the dynamics of a physical system, given by an ordinary differential equation (ODE), from observed state trajectories. To achieve better generalization with fewer training samples, SymODEN incorporates appropriate inductive bias by designing the associated computation graph in a physics-informed manner. In particular, we enforce Hamiltonian dynamics with control to learn the underlying dynamics in a transparent way, which can then be leveraged to draw insight about relevant physical aspects of the system, such as mass and potential energy. In addition, we propose a parametrization which can enforce this Hamiltonian formalism even when the generalized coordinate data is embedded in a high-dimensional space or we can only access velocity data instead of generalized momentum. This framework, by offering interpretable, physically-consistent models for physical systems, opens up new possibilities for synthesizing model-based control strategies.

Lunch will be provided.

This interdisciplinary meeting focusses on ML approaches that are useful for the sciences and engineering. The style is informal. Join us if you want to learn new ML approaches for scientific research and, in particular, if you're already using them.